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The ring ultrasonic transducers are widely used in the ocean engineering and medical fields.
This paper employs an extended orthogonal polynomial approach to solve the guided wave
propagation in two-dimensional structures, i.e. piezoelectric rings with rectangular cross-
-sections. The extended polynomial approach can overcome the drawbacks of the conven-
tional orthogonal polynomial approach which can be used to solve wave propagation in
one-dimensional structures. Through numerical comparison with the available results for a
rectangular aluminum bar, the validity of the present approach is illustrated. The dispersion
curves and displacement and electric potential distributions of various rectangular piezo-
electric rings are calculated, and the effects of different radius to thickness ratios, width to
height ratios and polarizing directions on the dispersion curves are illustrated.
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1. Introduction

With the development of materials and advances in manufacturing technology, piezoelectric ma-
terials having electromechanical coupling effects have found extensive applications in many smart
devices, and the behavior of the selected wave mode can directly affect the performance of the
devices. Thus, it is very important to study the wave characteristics in piezoelectric structures.
Much effort has been made both theoretically and experimentally to study wave propagation in
piezoelectric structures by scientists and engineers, which is essential for the application of piezo-
electric materials. Wave propagation along piezoelectric cylindrical rods of hexagonal 6, 622, and
6mm crystal symmetry was discussed by Wilson and Morrison (1977). The propagating nature
of the elastic and electric wave in bone and porous PZT was investigated by Chakraborty (2009).
Using the extended Durbin method, Ing et al. (2013) investigated the transient elastic waves
propagating in a two-layered piezoelectric medium The wave propagation behavior in layered
piezoelectric structures and functionally graded piezoelectric material structures has also been
studied by many researches with different methods, such as the transfer matrix method (Cai et
al., 2001), the layer element method (Han et al., 2004), the orthogonal polynomial series method
(Yu and Ma, 2008; Yu et al., 2013; Singh and Rokne, 2013), and so on.
As a common structure, hollow cylinder has been paid considerable attention on the wave

propagation. For piezoelectric media, Paul and Venkatesan (1987) and Shul’ga (2002) studied
three dimensional electroelastic waves and the axisymmetric waves in a hollow piezoelectric
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ceramic cylinder. Puzyrev and Storozhev (2011) studied the problem of electroelastic waves pro-
pagating in piezoelectric hollow cylinders of sector cross section and analyzed mode asymptotic
behavior and amplitude distributions of wave characteristics. Zenkour (2012) developed an ana-
lytical solution to the axisymmetric problem of a radially polarized piezoelectric hollow cylinders
subjected to electric, thermal and mechanical load. Using the Legendre orthogonal polynomial
approach developed by Lefebvre et al. (1999) to solve the waves in multilayered plates, Yu et al.
(2009) investigated the wave characteristics in functionally graded piezoelectric hollow cylinders.
These investigations focused on one-dimensional structures, i.e. the hollow cylinders are infinite
in axial direction and have a finite dimension in only one direction. But in practical applications,
many piezoelectric elements have very finite dimensions in two directions. One-dimensional mo-
dels are not suitable for these structures. Thus, it is significant to study the wave characteristics
in 2-D piezoelectric structures, such as a piezoelectric ring with rectangular cross-section. The
ring ultrasonic transducer has been widely used in ocean engineering and medical fields. But
few investigations on the wave propagation in ring transducers have been reported.
In this paper, we present an extended orthogonal polynomial series approach to solve the

wave propagation in a 2-D structure, i.e. a piezoelectric ring with rectangular cross-section.
The present approach can overcome the drawbacks of the conventional orthogonal polynomial
approach which can only deal with the one-dimensional structures that have a finite dimension in
only one direction, such as the axially infinite hollow cylinder, horizontally infinite flat plate. The
dispersion curves and displacement and electric potential distributions of various piezoelectric
rings with rectangular cross sections are shown. The effects of different width to height ratios,
radius to thickness ratios and polarizing directions on the wave characteristics are also illustrated.
The investigating results can be used to direct the design and optimization of the piezoelectric
ring transducers.

2. Mathematics and formulation of the problem

In this seciton, we derive the analytical formulation of the problem in cylindrical coordinate
(r, θ, z) with the z-axis coinciding with the axis of the ring. Considering an orthotropic ring with
rectangular cross-section, h is height in z direction and a, b denote the inner and outer radius
respectively, as shown in Fig. 1. The radius to thickness ratio is defined as η = b/(b − a) and
the width to height ratio is d/h. The polarizing direction is in r or z direction. In this paper,
traction free and open circuit boundary conditions are assumed.

Fig. 1. Schematic of a piezoelectric ring with rectangular cross-section

In cylindrical coordinate, the dynamic equation for the piezoelectric ring is governed by
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where ui, Tij and Di denote mechanical displacement, the stress and electric displacement com-
ponents respectively; ρ is the density of the material.
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where εij denotes the strain.
The constitutive equations for the piezoelectric ring with radial polarizing direction can be

written in the following form
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where Φ denotes the electric potential. Cij , eij and ǫij are the elastic, piezoelectric and dielectric
coefficients given in the crystallographic axes, respectively. I(r, z) is the rectangular window
function, introduced so as to meet the stress-free boundary conditions (Trr = Trθ = Trz = Tθz =
Tzz = Dr = Dz = 0 at the four boundaries), defined as

I(y, z) =

{

1 0 ¬ y ¬ d and 0 ¬ z ¬ h

0 elsewhere
(2.5)

For a free harmonic plane wave propagating in the circumferential direction in a ring, we
assume the displacement components, to be of the form

ur(r, θ, z, t) = exp(ikbθ − iωt)U(r, z) uθ(r, θ, z, t) = exp(ikbθ − iωt)V (r, z)

uz(r, θ, z, t) = exp(ikbθ − iωt)W (r, z) ϕ(r, θ, z, t) = exp(ikbθ − iωt)X(r, z)
(2.6)

where U(r, z), V (r, z) andW (r, z) denote the mechanical displacement amplitudes in the radial,
circumferential and axial directions respectively, and X(r, z) represents the amplitude of electric
potential. ω is the angular frequency, and k is the magnitude of the wave vector.
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Substituting Eqs. (2.2)-(2.6) into Eq. (2.1), the governing differential equations in terms of
mechanical displacement and electric potential components, gives
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where subscript comma indicates partial derivative.

To solve the coupled wave equation, we expand U(r, z), V (r, z), W (r, z) and X(r, z) into
products of two Legendre orthogonal polynomial series
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where pim,j (i = 1, 2, 3, 4) is the expansion coefficients and
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with Pm and Pn representing the mth and the nth Legendre polynomial. The summation over
the polynomials can be halted at some finite value m =M and n = N , when higher order terms
become essentially negligible.

Multiplying each equation by Qj(r)Ql(z)e
−jωt with j and l running respectively from zero

toM and zero to N , and integrating over z from zero to h and r from a to b and taking advantage
of the orthonormality of the polynomials Qm(r) and Qn(z), Eqs. (2.7) can be reorganized into
a form of the system problem
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where Ajlmnαβ (α, β = 1, 2, 3, 4) and Mjlmn are the elements of a non-symmetric matrix.

Equations (2.10)4 can be written as
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Substituting Equation (2.11) into equations (2.10)1, (2.10)2 and (2.10)3, gives
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Then, Eqs. (2.12) can be recognized into
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So, Eq. (2.13) forms the eigenvalue problem to be solved. The eigenvectors pim,n (i = 1, 2, 3) allow
the components of the displacement and p4m,n determines the electric potential distribution. The
eigenvalue ω2 gives angular frequency.

3. Numerical results

The computer programs in terms of the extended orthogonal polynomial approach have been
written using Mathematica to calculate the dispersion curves and displacement and electric
potential distributions for the piezoelectric rings. The physical properties of the piezoelectric
material, PZT-4, are listed in Table 1. Here, the elastic constants of the radial polarizing ring
and axial polarizing rings are the same to have a clear comparison.

Table 1. Material parameters of the piezoelectric materials

Property C11 C12 C13 C22 C23 C33 C44 C55 C66

13.9 7.8 7.4 13.9 7.4 11.5 2.56 2.56 3.05
r-polarization e15 e24 e31 e32 e33 ǫ11 ǫ22 ǫ33 ρ

12.7 12.7 −5.2 −5.2 15.1 650 650 560 7.5

a-polarization
e34 e16 e23 e21 e22 ǫ11 ǫ22 ǫ33 ρ
12.7 12.7 −5.2 −5.2 15.1 650 560 650 7.5

Units: Cij [10
10N/m2], ǫij [10

−11F/m], eij [C/m
2], ρ [103kg/m3]
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3.1. Approach validation

To the authors’ knowledge, there are not published results on the wave propagation for a
piezoelectric ring with rectangular cross-section so far. In order to check the effectiveness of the
present approach and validate the computer program, we calculate a 16mm by 5mm rectangu-
lar aluminum bar and make a comparison with previous results. The material parameters are
ρ = 2.7 · 103 kg/m3, C11 = C22 = C33 = 10.78 · 10

10 Pa, C12 = C13 = C23 = 5.494 · 10
10 Pa,

C44 = C55 = C66 = 2.645 · 10
10 Pa. Figure 2 is the corresponding dispersion curves, of which

lines are from Loveday (2006), and dotted lines are obtained from the present approach. As can
be seen, the agreement between the present approach and the previous results is quite good.

Fig. 2. Dispersion of propagating waves in a rectangular waveguide; lines: Philip W. Loveday’s results,
dotted lines: the authors’ results

3.2. Guided waves in piezoelectric rings with rectangular cross-sections

Figure 3 shows the dispersion curves of the first four order modes for the PZT-4 ring with a
square cross section and for the corresponding non-piezoelectric one with h = 1mm, a = 9mm,
b = 10mm and η = 10. It can be seen that piezoelectricity has a significant effect on the
dispersion curves. For any one specific mode, the phase velocities of non-piezoelectric ring are
smaller than those of the corresponding piezoelectric one, and the piezoelectric effect is very
little on the low order modes at low frequency and becomes stronger as the wave number and
mode order increase. The wave number is usually very big and the operating frequency is very
high in micro-scale SAW devices. So, the piezoelectric effects will be prominent.

Fig. 3. Dispersion curves of the first four order modes for a square ring with η = 10: (a) phase velocity
spectra, (b) frequency spectra, solid line, piezoelectric; dotted line, non-piezoelectric

Figures 4 and 5 show the dispersion curves of the PZT-4 rings with different radius to
thickness ratios (η = 10, η = 2) and different width to height ratios (d/h = 1/2, d/h = 1/4,
d/h = 1/10), respectively. Figure 6 illustrates the dispersion curves of the PZT-4 ring with
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Fig. 4. Phase velocity dispersion curves for piezoelectric square rings: (a) η = 10, (b) η = 2

Fig. 5. Phase velocity dispersion curves for piezoelectric rectangular rings with different width to
thickness ratios: (a) d/h = 1/2, (b) d/h = 1/4, (c) d/h = 1/10

Fig. 6. Phase velocity dispersion curves for a piezoelectric rectangular ring with axial polarization
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Fig. 7. Mechanical displacement and electric potential profiles of the first mode for a piezoelectric
square ring with η = 2 at kd = 4.1

Fig. 8. Mechanical displacement and electric potential profiles of the first mode for a piezoelectric
square ring with η = 2 at kd = 4.1
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axial polarization. From the curves, we find that different radius to thickness ratios and width
to height ratios and polarizing direction all have significant influence on the dispersion curves.
The first two modes have no cut-off frequencies, which is different from that for an infinite
hollow cylinder in which only the first mode has no cut-off frequencies. In an infinite hollow
cylinder, only the thickness direction is a finite dimension, but there are two finite dimensions
in a rectangular ring. With the width to height ratio increasing, the difference between the first
mode dispersion curve and the second one becomes small, and the cut-off frequencies become
small.
The displacement and electric potential profiles of the first mode for a square ring withη = 10

at kd = 4.1 and kd = 40.1 are respectively shown in Figs. 7 and 8. We notice that displacement
u and v and electric potential distributions are symmetry and displacement w is antisymmetry
in axial direction, This is because the geometry and material propreties are symmetric in axial
direction. The displacement and electric potential profiles distribute mainly near the outside
edge at small wavenumber case and distribute around the four boundaries at big wavenumber
case.

4. Conclusions and prospects

The formulation to analyze the guided wave in piezoelectric rings with rectangular cross-sections
using the extended orthogonal polynomial approach has been presented in this paper. According
to the numerical results, we can draw the following conclusions:

(a) The effects of the piezoelectricity on dispersion curves become stronger with the wave
number and mode order increasing.

(b) The width to height ratio, radius to thickness ratio and polarization all can significantly
influence the guided wave characteristics in piezoelectric rings.

(c) The displacement and electric potential distributions are symmetry in axial direction and
distribute mainly near the outside edge.

So, through changing the width to height ratio and the radius to thickness ratio of the
piezoelectric ring, we can obtain the ring transducers with the dispersion features and field
distributions that we want.
We consider that the present approach could be of interest in non-destructive testing evalu-

ation, and can deal with 2D structures with more complex cross sections and multi-field coupled
2D structures.
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